Dawn Spacecraft Departing Vesta For Ceres

Composite Image of Vesta Showing Surface Material
Image Credit: AP

Despite a problem with a reaction wheel, Dawn continues to spiral outward from the asteroid Vesta, where it has spent the past year. Today, 26 August, Dawn is formally scheduled to depart Vesta.

Both the internal and external structures have been thoroughly mapped.

On 8 September 2012, the Dawn science team will host “Hasta La Vesta”, a celebration of the exploration of Vesta and the departure of Dawn toward its 2015 arrival at Ceres.

Curiosity – Glenelg

Curiosity – First Target will be Glenelg.
Image Credit: NASA / JPL-Caltech / University of Arizona

Glenelg, a site (blue dot) about 400 meters from where Curiosity landed, has been selected as the first target for the rover. Glenelg is a palindrome, and was thought appropriate because the rover will visit the spot (below) twice during its exploration of the area, before heading to the base of Mount Sharp.

Glenelg – Intersection of three Types of Terrain
Image Credit: NASA / JPL-Caltech / University of Arizona

Scientists are interested in the bright terrain at the top because this may be bedrock, which could be a good target for Curiosity’s first drilling experiment. The second terrain, below and right, shows extensive small craters and may represent an older or harder surface. The last area, below and left, is the type of terrain where Curiosity landed and scientists can try to determine if the same kind of rock texture at Goulburn, an area where blasts from the descent stage rocket engines scoured away some of the surface, also occurs at Glenelg.

If an appropriate site is found, the rover will use its drill to extract a few grains and feed them into the rover’s analytical instruments, SAM and CheMin, which will then make very detailed mineralogical and other investigations.

The Sample Analysis at Mars (SAM) is a suite of three instruments, including a mass spectrometer, gas chromatograph, and a tunable laser spectrometer, which will look for compounds of the element carbon, including methane, that are associated with life. The instruments will explore ways in which they are generated and destroyed in the martian ecosphere. SAM will also look for and measure the abundances of other light elements, such as hydrogen, oxygen, and nitrogen, associated with life.

The Chemistry and Mineralogy instrument (CheMin) will identify and measure the abundances of various minerals on Mars.

Once this initial exploration is complete (which could take a month or more), the rover will aim to drive to the blue spot marked “Base of Mt. Sharp”.

This is a break in the dunes that should let Curiosity begin moving up the slopes. The base of Mount Sharp is composed of layered buttes and mesas, and should reveal the geological history of the area.

Curiosity – Science from ChemCam

Coronation Spectrum
ChemCam Spectrum from the Rock Named Coronation
Image Credit: NASA / JPL-Caltech / LANL / CNES / IRAP

Earlier this week, Curiosity used its Chemistry and Camera (ChemCam) to record the ultraviolet (UV), violet, visible and near-infrared spectra from a rock called Coronation. The rock was bombarded with 30 laser pulses, and the light recorded by three spectrometers.

Viewing the enlarged image, minor elements titanium and manganese show in the insert on the left in the 398-to-404-nanometer range, and Hydrogen shows up in the right hand insert with carbon (from carbon dioxide in the Martian atmosphere). Hydrogen was only present in the first laser shot, indicating it was present only in the surface material.

The preliminary analysis shows the rock to probably be basalt, a common volcanic rock on Mars. Coronation is about 8 centimeters across and was located about 1.5 meters from Curiosity (prior to its drive yesterday).

Curiosity – First Drive at Bradbury Landing

First Drive
Curiosity Makes First Drive at Bradbury Landing
Image Credit: NASA / JPL-Caltech

360° image of Bradbury Landing taken from Curiosity following 20 feet of driving, the first movement on Mars for this rover. The drive comprised a forward segment, a 90° turn and a short drive in reverse. The soil is relatively firm and no problems were encountered.

The landing site has been named for famed science fiction author Ray Bradbury, author of many books, including “The Martian Chronicles”. Bradbury died in June at 92.

In the image, one can see the scouring of the surface from the four rocket engines of the Sky Crane, which lowered Curiosity to the surface. Earlier this week, the Chemistry and Camera (ChemCam) instrument recorded spectra from laser pulses fired at rocks exposed by the rocket blasts. Preliminary results suggest that the rocks may be basalt within a sedimentary deposit.

Mission operators expect to spend several days in the landing area before setting off on a 400 meter drive to the east-southeast.

Curiosity – Laser Beam and the ChemCam

Laser Beam and ChemCam Explore the Chemistry of Mars Rock
Image Credit: NASA / JPL-Caltech / LANL / CNES / IRAP

Two sols ago, Curiosity fired its laser at the fist sized rock called “Coronation”, ChemCam (Chemistry Camera) recorded the light from the elements vaporized by the laser and analyzed it with three spectrometers. The small square in the image is 8 mm across.

One question that this test will answer is whether the composition of the vaporized rock changed during the sequence of 30 laser pulses. If so, it could indicate that there was dust on the surface prior to the rock beneath being vaporized.

ChemCam is the first instrument capable of analyzing the elemental make up of material on Mars. Previous instruments on Spirit and Opportunity could take spectral data of rock minerals in the infrared and with alpha particle scattering and X-rays:

  • Miniature Thermal Emission Spectrometer (Mini-TES)
  • Mössbauer Spectrometer (MB)
  • Alpha Particle X-Ray Spectrometer (APXS)

Curiosity is also equipped with an Alpha Particle X-Ray Spectrometer.

ChemCam was developed, built and tested by the U.S. Department of Energy’s Los Alamos National Laboratory in partnership with scientists and engineers funded by France’s national space agency, Centre National d’Etudes Spatiales (CNES) and research agency, Centre National de la Recherche Scientifique (CNRS).

Below is the first image showing the extension of the robotic arm. The 7-foot-long (2.1-meter-long) arm maneuvers a turret of tools including a camera, a drill, a spectrometer, a scoop and mechanisms for sieving and portioning samples of powdered rock and soil.

Robot Arm
Robotic Arm on Curiosity Extended for the First Time on Mars
Image Credit: NASA / JPL-Caltech

Curiosity – Brain Transplant

Curiosity – View of the Rover on the Surface of Mars in Gale Crater
Image Credit: NASA / JPL-Caltech

Curiosity is performing flawlessly. The computer software that it arrived with on Mars has served its purpose. The instruments, cameras and communication equipment have been checked out and validated. Now, the computer is being loaded with the first version of software required for operating the science experiments and instruments, and the programming required for moving the rover around the surface of Gale Crater.

Curiosity – Getting Started

Curiosity Landing Site. Dark Disturbed Soil from Sky Crane Rocket Blast.
Image Credit: NASA / JPL-Caltech

NASA Press Release:

August 7: Curiosity Gets More Looks at its Surroundings; Health Checks Continue

Curiosity is healthy as it continues to familiarize itself with its new home in Gale Crater and check out its systems. The team’s plans for Curiosity checkout today included raising the rover’s mast and continued testing of its high-gain antenna, whose pointing toward Earth will be adjusted on Sol 2. Science data were collected from Curiosity’s Radiation Assessment Detector, and activities were performed with the Rover Environmental Monitoring Station instrument. Curiosity transmitted its first color image from the surface of Mars, from the Mars Hand Lens Imager, or MAHLI, showing part of the north rim of Gale Crater. Additional calibration images were received from Curiosity’s Navcam and Mastcam. All systems are go for deployment of the rover’s remote sensing mast on Sol 2, followed by a 360-degree pan by the rover’s Navcam. The Mastcam will also be calibrated against a target image on the rover. NASA’s Mars Reconnaissance Orbiter returned a spectacular image of Curiosity’s landing site, depicting the rover, parachute, back shell, heat shield and descent stage. Data were received from both NASA’s Mars Reconnaissance Orbiter and Mars Odyssey.

Curiosity – Sol 1 – Landing Site

Curiosity Landing Site
Curiosity Landing Site from HiRISE
Image Credit: NASA / JPL-Caltech / University of Arizona

The entire Curiosity Landing Site is shown in this image. Visible is the Sky Crane, the Parachute and Back Shell, The Mars Science Laboratory (MSL) and the Heatshield (far right).

Below, Curiosity’s Heatshield in Flight:

Today, the MRO team located another object in this image — not present in prior images of the same region — which is the right size to be the rover’s heat shield. The heat shield was ejected from the rover and its back shell before this image was taken. The team thinks the heat shield is still in free flight, because, if it were to have already hit the surface, it would have kicked up a dust cloud. The HiRISE image of NASA’s Phoenix lander on its parachute also captured the heat shield in free fall. Other image products from the same observation are, or will be, at http://uahirise.org/releases/msl-descent.php .

Curiosity Heatshield
Curiosity Heatshield in Flight from HiRISE aboard Mars Reconnaissance Orbiter (MRO)
Image Credit: NASA / JPL-Caltech / University of Arizona