Hayabusa – Dust From Itokawa – III

The issue of the journal Science from 26 August 2011 vol 333 pp 1113-1131 has six articles on the Hayabusa sample return mission from the asteroid Itokawa. The first article is discussed here, the second here, and this is the third:

Neutron Activation Analysis of a Particle from Asteroid Itokawa

A single grain from the Hayabusa mission has been analyzed by instrumental neutron activation analysis (INAA). The grain was mainly olivine, with minor amounts of plagioclase, troilite and metal.

This grain was one of the largest returned by the Hayabusa mission. The scanning electron microprobe (SEM) results show this to be a large crystal of olivine. Small pieces of silicate were attached to the surface. Radioactive analysis indicates that the grain is relatively homogeneous.

Comparison of the INAA analysis of this grain from Itokawa with from an LL6 chondrite (St Severin) and an L6 chondrite (Modoc) indicated an elemental abundance discrepancy.

Iron (Fe) and Scandium (Sc) abundance can be determined reliably, and the ratio is determined by the differentiation of iron into the core of a body during its formation. In particular, the Fe/Sc ratios from the Earth, Moon, Mars and 4Vesta are lower than those of chondrites. The ratios from Itokawa are higher than those from terrestrial olivine, and are thus from an extraterrestrial origin. This increases confidence that Hayabusa did return samples from Itokawa.

Nickel (Ni) and Cobalt (Co) typically diffuse into a metal phase. The ratio of Ni/Co in bulk chondrites plot along a line with carbonaceous chondrites. Samples from the Earth’s crust are relatively depleted in Nickel compared to Cobalt, and thus are distinguished from the grain returned from Itokawa.

In addition, Iridium (Ir) abundances were estimated, and the result indicates that the sample must have condensed from a fractionated nebula gas where refractory siderophiles such as Iridium had already condensed and been removed.

Advertisements

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s