A 2021 Mars Expedition Sounds Exciting but Does It Make Sense?

Commentary by Michael Mackowski

About a year ago, Dennis Tito formed an foundation, Inspiration Mars, whose goal was to send a married couple on a fly-by space mission to Mars and back. This would have to be launched in 2018 to take advantage of the relative alignments of the Earth and Mars. There are obvious challenges to overcome to make this successful, notably funding and the lack of demonstrated life support systems that can last 500 days with no resupply. A few months ago, Tito testified before Congress, noting that he would need the help of NASA to pull off this mission, specifically calling out the need for a heavy launch vehicle like the Space Launch System (SLS), which is now in development.

Now a some members of Congress (specifically Rep. Lamar Smith, chairman of the House Science, Space and Technology Committee) is proposing a very similar mission but sponsored by NASA. Note that the idea did not originate with NASA.  This would be launched in 2021 and takes advantage of a Venus fly-by for a gravity assist, and results in a mission only a month or so longer than the 2018 plan by Inspiration Mars. It would be the second launch of the SLS and the inaugural flight of the Orion deep-space vehicle. This plan, as well as the Inspiration Mars plan, requires a habitat module which does not exist today, although could be based on American or Russian modules used on the International Space Station. The 2021 launch date provides a bit more realistic schedule to develop some of the missing pieces for such an audacious mission compared to the Inspiration Mars plan.

But does this 2021 plan make any sense?  Does it lead to the permanent settlement of space, or is it part of a long term strategy of human exploration of deep space, or will it leave us with any new capabilities that could be used to develop lunar resources or advance the date of putting people on the surface of Mars? My initial thought is no, it does none of these very well, but there may still be a reason to embrace it (which I’ll get to in a bit).

For establishing a solid foothold on the Moon, we will need landers and equipment to process the local regolith to extract resources. Any deep space mission, be it to the Moon, an asteroid, or Mars, needs to be part of a long term strategic plan to establish mankind’s permanent presence on other solar system bodies. This mission doesn’t address those needs. For putting a crew on the surface of Mars, we need landers (again) and long-lived life support equipment. Both the new proposal and the Inspiration Mars concept will need a reliable closed life support system, so either of these would be a step in that direction. Ideally, one would like to develop that technology and test it in low Earth orbit or in cislunar space, where a rescue or recovery would be possible should something go wrong. I have not seen a detailed development plan for these missions, so perhaps they are including that. But if that is the case, what value added is the cost of this fly-by mission provide you since you already have developed one of the technologies needed for a Mars landing mission? This is where we get to the “other” reason this mission may make sense.

Is a Venus and Mars human fly-by mission valuable from a gee-whiz perspective that might just incite an increased demand for missions that would actually lead to permanent settlements? We have been looking for something for the public to get excited about. Could this be it? The Inspiration Mars folks admitted this from the start, so is Congress picking up on that approach?  Or are they just looking for an entertaining space spectacular (it might be a great television reality series) to justify the existence of their giant SLS rocket?

While a fly-by mission with a crew generates no science results that a robotic probe couldn’t provide at a much lower cost, and doesn’t really put footprints on Mars, and leaves no real infrastructure for future long-term development, the impact of actually going to Mars may generate intangible benefits that are difficult to imagine at this time.

Such a mission would indeed be a real interplanetary expedition. There is something to be said for that. It may not have any great scientific justification, but it could have a big impact on society at a more fundamental level. Is this the “statement” mission that underscores (regains, for some) America’s leadership in space that a lot of people have been calling for?

This doesn’t have to be a terribly expensive mission. The SLS is happening anyway. This may be a relatively cheap way to justify the expensive SLS development. The hab module shouldn’t be all that expensive, relatively speaking. It would be similar to ISS modules. And we’ve been working on CLLSS for a long time. The technology to pull off this mission isn’t that far off, but certainly there is a lot of development required. At this early stage, however, making a believable cost-benefits trade study is difficult.

Are there better ways to spend what little money NASA has at their disposal? Wouldn’t investing in a large lunar lander be a more logical next step? That would require a long term strategy for human planetary exploration, which we still don’t have. But remember, the benefits of this proposal are not primarily driven by logic. If it encourages some political commitment to a long term space program, is that really so bad?

Advertisements

2 thoughts on “A 2021 Mars Expedition Sounds Exciting but Does It Make Sense?

  1. Discover magazine, June 2006 article “Are we trapped on earth?” by M.C.Lord. “Just as we are poised to begin exploring the frontiers of deep space, a sad truth is beginning to emerge: Far from being a naturally spacefaring species, we are frail creatures who may not be able to function for long periods outside the gravity, atmosphere and magnetic field of mother earth. Radiation could be a showstopper. You don’t want to send dead astronauts to Mars. Even bulky shielding will not protect a Mars-bound human cargo.
    It’s like getting a whole-body x-ray every five days. An aluminum hull a foot thick wouldn’t change the dose very much. The distance varies 35 to 63 million miles, about 7 months one-way. The next favorable opposition is 2018, then 2035.
    In 2014, the word is a need to live three meters underground.

  2. Mike,

    Great analysis! I’ll add my two cents. While there isn’t much scientific knowledge gained from a Mars fly-by or a Mars/Venus fly-by, there is a certain amount of operational, development, and engineering know-how that will be gained.

    You’ll have engineers develop the ECLSS for the long duration, the radiation shielding will have to be developed and with this, it’ll be flight tested. Also, you’ll have flight operations, mission control, ground systems, etc. that will each get a little more exercise for missions like this than they are currently getting.

    This has been one of the unsung accomplishments of ISS. While not generating reams of new science or pushing the limits of human exploration very far, it has certainly given us a taste of what it is like to live in space and that know-how will enable further accomplishments in science and exploration.

Leave a Reply

Please log in using one of these methods to post your comment:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s