The State of Space

Commentary by Michael Mackowski

A year ago I posted a note here about the upcoming busy summer. Just about all of those missions were successful, although at that time SpaceX was planning on a dozen or so launches in 2014 along with the initial test flight of the Falcon Heavy. It does not look like they will hit that launch rate and Falcon Heavy certainly won’t fly this year.

I give SpaceX a lot of credit for investing in the development of reusable rockets. I am enthusiastic about a company that spends a lot of its own resources on this type of R&D. The spectacular recent test failure of the Falcon 9R Dev 1 test vehicle was a setback, but not a fatal blow to that effort. You learn from failures. The level of sophistication to include an autodestruct upon detecting an out-of-limits condition is impressive.

I see a lot of comments on line downplaying the impact of this setback. I wonder if it was a NASA test vehicle that crashed, would critics cut them the same slack? People seem to be eager to jump all over NASA when they have a setback (like the announced delay in the first flight of the SLS heavy lift rocket). But SpaceX gets a free pass, or even enthusiastic support for pushing the envelope. NASA, being taxpayer funded, has gotten into a situation where failure is not tolerated, thus testing may be more conservative, and progress slower.

Earlier this week, the Space Launch System passed a design review that enables the program to move forward. Unfortunately, the first flight slipped yet again. I have mixed feelings on this program. I think the US needs a big rocket, and I understand the problem that NASA doesn’t have enough money to develop a big rocket and the payloads to go on it. Maybe you do it in parallel. What are the options? You could not develop a big rocket and try to figure some other way to get beyond low Earth orbit (BEO). Lots of small rockets may work but look at the trouble it took to build a space station that way.

You could rely on a private firm to develop something that may or may not meet NASA requirements (like the SpaceX “Mars Colonial Transport” which is a viewgraph rocket). The Falcon Heavy doesn’t provide the capability of SLS but it’s a lot cheaper. The design and control of that vehicle is in private hands but the first BEO missions are undoubtedly going to be government sponsored. I hear arguments that a government developed and owned rocket will be ridiculously expensive, and I can’t argue that. But politically, I don’t think NASA (and its Congressional sponsors) can sit on their hands and do nothing, or wait for an Elon Musk to develop a big rocket. Doing nothing would be self-defeating – admitting that you cannot afford deep space manned exploration. Maybe we can’t.

So we end up playing “pretend” that we can afford to explore BEO. I think that SLS (and similarly the Asteroid Redirect Mission) is an attempt to do what we can with the resources we are given. It may not be a complete program, but the alternative is to do nothing. I don’t agree that hoping some private entity is a politically acceptable alternative. It may be a practical and realistic one, but politics and the workings of Washington DC are often neither practical nor realistic.

Advertisements

Stratolaunch Systems Teams With Orbital Sciences

Stratolaunch
Stratolaunch Carrying A Falcon Rocket from SpaceX
Image Credit: Stratolaunch

Previously, NSSPhoenix reported in December 2011 on the new Stratolaunch design for air launched orbital satellite services. Stratolaunch is the brainchild of billionaire philanthropist and Microsoft co-founder Paul Allen.

Allen enlisted Scaled Composites from Mojave, California to build the twin boom mothership, pictured above. The 222,000-kilogram airplane with a 117-meter wingspan would be capable of flying 2,400 kilometers before deploying a rocket capable of delivering 2,300 kilograms to geosynchronous orbit. Space Technologies Corporation (SpaceX) agreed to study the feasibility of turning their Falcon 9 rocket into an air-launched system. Dynetics Corp. of Huntsville, Alabama was chosen to build the mating and integration system.

Allen, the author of the SpaceShipOne project that won the Ansari X-Prize for two consecutive sub-orbital flights of 100 kilometers within two weeks in 2004, said that he expected to spend “at least an order of magnitude more” on Stratolaunch than he spent on SpaceShipOne.

In late November, SpaceX and Stratolaunch parted ways, agreeing that the effort to retool the SpaceX assembly line into one capable of building a four or five engine Falcon with the associated structural and engineering changes, was too great a change to the SpaceX business model in return for the financial possibilities.

Subsequently, Stratolaunch approached Orbital Sciences, a company with a long history of air launched orbital missions dating back to 1990. Orbital has agreed to study providing the launch vehicle for Stratolaunch. Currently, Orbital’s Pegasus system can put 450 kilograms of satellite into low-Earth orbit. But there has been only a single launch in the past four years, and the only remaining manifest is for a 2013 launch of NASA’s Interface Region Imaging Spectrograph space telescope.

Orbital is currently working on their Commercial Resupply Service (CRS) Antares rocket, which relies on a liquid fueled first stage powered by Ukrainian built rocket engines, to fulfill a contract with NASA to resupply the International Space Station (ISS).

Stratolaunch has been engaged with Orbital for several months and have contracted with Orbital to evaluate configurations of Orbital systems capable of satisfying Stratolaunch requirements.

Arizona State Space Exploration Symposium – A Review

Michael Mackowski, a member of the Phoenix chapter of the National Space Society, attended the one day symposium titled “The Future of Humans in Space” on 26 October 2012. He sent us these observations:

Notes from ASU Space Exploration Symposium, 10/26/12

I attended a symposium at ASU on Friday, Oct. 26, 2012. The name of the event was “Future of Humans in Space: Re-Kindling the Dream. The day-long symposium was sponsored by ASU’s Beyond Center, the School of Earth and Space Exploration, and the Center for Science and the Imagination. Here are my random notes on each speaker.

Hugh Downs (former television news personality and current chairman of the board of governors of the NSS)
He reminisced about NASA’s “glory days” when a leader like von Braun could make design decisions on the spot. Downs claimed that Werner saw the original Saturn V design with four engines, and suggested they add a fifth. There were no trade studies, no review committees, no cost-benefits trades, just a brilliant engineer with the freedom to get things done. Downs also talked about the early days of the National Space Society including how George Whitesides helped get it going.

George Whitesides (CEO and president of Virgin Galactic)
He talked about how Virgin wants to put more people into space. While he acknowledged these are suborbital flights, he avoided noting (until asked) that it is only for two minutes. He tried to make a case that these are exciting times for space development right now, with SpaceX proving their new capabilities and Virgin close to proving out the market for tourist flights into space. Just how this fits in with the theme of the symposium (“Why are we stuck in low Earth orbit?”), when Virgin doesn’t even GET to orbit was a bit puzzling to me. I’m all for rich people wanting to take their joy rides, and maybe this advances cheaper access to space, but I don’t see how suborbital tourist rides gets us closer to settlements off the Earth. Perhaps it can establish a space tourist market that can evolve into a LEO business, thus driving down launch costs. Whitesides did mention that Virgin Galactic has plans for orbital vehicles but that is a long way off.

Ed Finn (Director, Center for Science and the Imagination)
This center (http://csi.asu.edu) was one of the co-sponsors of this event and they had a few minutes to introduce themselves. A simple statement of their charter is to connect science and the arts. One of their efforts is to bring together scientists and engineers with science fiction writers. It’s another example of ASU president Michael Crow’s adventures in collaborations across disciplines.

Kip Hodges (Director, ASU School of Earth and Space Exploration)
He talked about collaboration between humans and robots in future space exploration from the perspective of a field geologist. His main point was that robots are unlikely to ever be as good as humans for exploration. Human cognition will always be superior to autonomous machines, but there is plenty of room for working together. The problem is latency, or the time it takes to communicate with a teleprescence on another world. Until we figure that out, robotic exploration will be slow and inefficient.

Panel Discussion: How to Leverage Our Investment in Space
This panel included Kip Hodges, Lawrence Krauss (physics professor), astronaut Andrew Thomas, and Paul Davies. I don’t think the discussion ever talked about leveraging our past investments, but the topic veered into how will we ever manage to get a manned Mars mission. All of the classic debate topics came up:
– Destinations versus Capabilities
– Moon versus Mars
– Robots versus People
– Science versus Adventure
– Settlement versus Political Prestige
– Government versus Entrepreneur
There was a consensus that the ultimate goal is human settlement on other worlds. But the path to get there is not at all clear. Astronaut Andy Thomas had a lucid view of the situation, in that space exploration is not a national imperative. Our indecisiveness is a social issue, not technical, not even political. It is still too expensive for private entities to bankroll, and the American taxpayer is in no mood to pay for more than we are doing now. Public interest is just too shallow. It won’t be performed by “commercial” firms because there is no business case for going to the Moon or Mars. The problem of radiation exposure was debated, and clearly more research is required here. Some of the panelists supported the concept of a one-way mission to Mars. These would not be suicide missions but the beginnings of permanent settlements. Others, however, said that eliminating the problems of a return to Earth stage is replaced with other, equally challenging problems of long duration survival.

Robert Zubrin (author of The Case for Mars)
Zubrin kicked off his presentation with the audacious claim that the most important issue is the world today is going to Mars. In 500 years, the first mission to Mars will be remembered more than who wins the election or how we manage our health care system. There’s some truth to that, but most people have to pay their bills first. He gave his classic talk on how to get to Mars in ten years. It is a very well thought out mission plan, and a lot of it makes sense. On the down side, Robert seems to be using the same charts and graphics from when he first came up with this concept twenty years ago. (He had grainy images from Viking to make a point about landing sites. How hard would it be to use some images from, say, the 1990s?) When it comes to destination-vs-capabilities, Zubrin is of the mind that missions drive the technology, so he wants to see a challenging mission declared. Unfortunately, this runs in the face of Andy Thomas’s observation that today’s American public is in no mood for expensive space spectaculars.

Kim Stanley Robinson (science fiction author)
Robinson’s take on space exploration was a bit more philosophical than the other speakers, as he is a writer and not a technologist. He claims that “the space project” will naturally occur as the outcome of a healthy planet and a healthy human civilization. Looking around the world right now, we’re not there. Thinking of space as a planet will help us deal with climate change. He’s not enamored with so-called “commercial” space. Space is a commons, not a playground for the rich. We need to take care of our own planet, as only Earth matters. We also have to acknowledge that we, as a species, are not “destined” for space. We are products of the Earth’s biosphere. We can attempt to take it with us, but the inter-relationships among human beings and microbiotic life (for example) is not fully understood. If we take a sterile environment with us on deep space missions, what crucial microbes will we forget?

Panel Discussion: Wilder ideas, one-way missions, warp drives, starships, etc.
This panel consisted of Sarah Walker (an astrobiologist), Ed Finn (from the Center for Science and the Imagination), Paul Davies, Kim Stanley Robinson, and Robert Zubrin. It was an entertaining discussion on such speculative topics as nuclear propulsion, space elevators, controlled fusion, magnetic monopoles, generation ships, modified human biology, etc.

Summary
There was no real conclusion or summary statement planned, but I thoroughly enjoyed the day. I spoke with Prof. Paul Davies prior to the meeting and he kindly gave me a few minutes on stage to promote local chapters of the National Space Society and the American Institute of Aeronautics and Astronautics. Some good contacts were made and I think there will be opportunities for collaboration between ASU and groups like NSS, the Moon Society, and AIAA.

As for the prospects for invigorating the space program, I believe the key word is patience. Government-run space exploration will only accomplish what citizens are demanding, and right now, not enough citizens are demanding a base on the moon or Mars. Privately sponsored space exploration might happen eventually, but it would have to be from a purely altruistic motivation, as there is no business case for exploration any time soon. We will need to wait for the technology to allow either of these paths to become affordable before we will make much progress towards establishing a true space faring civilization. That is the sad reality.

Dragon – Return to Earth – Reentry and Landing

Reentry
Dragon Re-entry
Image Credit: SpaceX

The final de-orbit burn occurred at 11:28 AM Phoenix time. The burn is scheduled to last 10 minutes and 40 seconds.

The trunk is scheduled to be jettisoned at 11:41 (1841 UTC).

Drogue chute deployed.

SpaceX Tweet: #Dragon’s three main parachutes have deployed (12:12 Phoenix time).

There is a report that the ISS crew has seen three good chutes.

Splashdown scheduled for 3 minutes from now.

12:20 PM Phoenix time –

SpaceX Tweet: #Dragon safely splashed down in Pacific at 12:22PM PT

Congratulations to SpaceX on the their second successful mission to the International Space Station and return, and their first of twelve missions under their contract with NASA to keep the ISS supplied and operating.

In the Water
Dragon in the Water after Splashdown
Image Credit: NASA

Dragon – Return to Earth – Release and Leaving the ISS

Acronymns

You can follow the orbital track of Dragon N2YO.com.

At 5:41 AM Phoenix time (1241 UTC) we are about 45 minutes away from release of the Dragon. The process of unberthing has been completed.

Dragon CRS1
Dragon Ready for Release from the SSRMS Canadarm
Image Credit: NASA TV

The prime release window is from 6:26 – 6:47 AM Phoenix time (1326 – 1347 UTC). The Backup release window is from 6:59 – 7:21 (1359-1421 UTC).

Following release, Dragon will make an initial burn at 6:27 to begin moving away from the ISS. It will make a second burn at 6:29 and move beyond the 200 meter Keep Out Sphere about 6:36 AM Phoenix time.

At 7:22 AM Phoenix time, Dragon will execute an apogee reduction burn, and at 11:28 AM, Dragon will execute a perigee reduction burn and begin the de-orbit process, leading to splashdown off the coast of Baja California at 12:20 PM Phoenix time.

Dragon CRS1
Dragon Rocket Burns Leaving the International Space Station
Image Credit: NASA TV

At 6:11 AM Phoenix time we are about 15 minutes from release, and about 260 miles above the Earth, passing over Spain and Portugal.

With 10 minutes until release, the teams at NASA and SpaceX have been polled for release and both teams are green.

Go for release.

Snares are being released.

At 6:29 AM Phoenix time (1329 UTC), we have audio confirmation of the release of the Dragon spacecraft. The ISS is out of range for KU communication and we have no video.

Departure burn one is complete.

Dragon CRS1
Dragon Leaving the International Space Station
Image Credit: NASA TV

The second burn is complete.

Dragon CRS1
View from the ISS of Dragon Leaving after the Second Burn
Image Credit: NASA TV

Dragon CRS1
View of the ISS from Dragon after the Second Burn
Image Credit: NASA TV

Dragon CRS1
View of the ISS from Dragon Prior to the Yaw Maneuver
Image Credit: NASA TV

Dragon CRS1
View of the ISS from Dragon During the Yaw Maneuver
Image Credit: NASA TV

The third burn is complete, and the Dragon is moving rapidly away from the Space Station.

Dragon – Capture and Berthing – Images

Capture of the Dragon was completed by Sunita Williams and Akihiko Hoshide at 3:56 AM Phoenix time (10:56 UTC). Suni: “Looks like we tamed the dragon, she’s on board with us.”

Referring to the fact that Dragon is capable of carrying powered equipment to and from the space station, the space station crew reported that they had captured Dragon and were looking forward to the chocolate-vanilla swirl ice cream in the freezer aboard the space craft.

Sunlight
Dragon Attached to ISS – In The Sunlight Above Earth
Image Credit: NASA TV

At 4:45 Phoenix time, the space station crew is preparing for Common Berthing Mechanism (CBM) inspection.

The CBM has been inspected and has been confirmed to be in good condition. Since the ISS is out of range of KU communication, there will be a 10-15 minute wait until the crew can move the robotic arm to the pre-install position.

Moving
Dragon Moving Carefully to the Berthing Position on the Harmony Node
Image Credit: NASA TV

In the image below, the Dragon Common Berthing Mechanism (CBM) is in the upper right and the Harmony Node is in the lower left. The ISS crew is waiting to receive permission to move the Dragon to the pre-install position.

CBM
Dragon Common Berthing Mechanism
Image Credit: NASA TV

At 5:15 AM Phoenix time (12:15 UTC), Dragon is being moved to the pre-install position.

Pre-Install
Dragon Being Moved to the Pre-Install Position
Image Credit: NASA TV

The ground crew is preparing to give the go ahead to berth the Dragon. Currently the Flight director hand-over is in work for transition from Orbit-1 to Orbit-2.

The flight director has begun to continue the process leading up to berthing. Suni is checking that the thrusters have been safed.

At 5:41 AM, the Dragon is again in motion, moving toward the bottom of the Harmony module.

And Suni has confirmed contact: “We are ready to latch”.

RTL
Dragon Makes Contact and is Ready To Latch
Image Credit: NASA TV

First stage capture is complete and the bolts have been tightened. The robotic arm has been “limped”, but not disengaged.

Second stage capture is underway, 272 Miles above the South Atlantic. With the re-establishment of solid comm, Suni can proceed.

At 6:03 AM (13:03 UTC), installation has been confirmed.

RTL
Dragon Installed on the International Space Station
Image Credit: NASA TV

Graphic showing all the vehicles currently attached to the International Space Station.

RTL
Dragon in the International Space Station Parking Lot
Image Credit: NASA TV

Dragon – Capture By ISS – CRS-1

Rendezvous
Dragon 12 Meters from the International Space Station
Image Credit: NASA TV

Acronyms.

NASA TV provides coverage of the SpaceX/Dragon rendezvous and grappling. SpaceX will also provide coverage.

Latest Key times:

  • 5:13am et/2:13am pt – 250 meter hold (go/no-go)
  • 6:25am et/3:25am pt – 30 meter hold (go/no-go)
  • 6:57am et/3:57 am pt – 10 meter hold (go/no-go for capture)
  • 7:17am et/4:17 am pt – Capture/grapple

And we are at the 10 meter capture point at 3:43 AM Phoenix time. About 10 minutes ahead of schedule.

NASA has given GO for capture.

From Dragon
Dragon Ready for Grapple by Canadarm on the International Space Station
Image Credit: NASA TV

One Meter to go.

Capture complete at 3:56 AM Phoenix time. Everything has gone according to plan and ahead of schedule.

One Meter
Dragon One Meter From Canadarm on the International Space Station
Image Credit: NASA TV

Capture
Dragon One Captured By Canadarm on the International Space Station
Image Credit: NASA TV

CloseUp
Close Up of Dragon One Attached to the Canadarm
Image Credit: NASA TV

Sunlight
Dragon Attached to ISS – In The Sunlight Above Earth
Image Credit: NASA TV